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Abstract

This paper examines fully developed laminar ¯ow and conjugated forced convection heat transfer in curved
rectangular channels. The wall average Nusselt number, Nu, is presented as a function of the wall conduction
parameter, f, the Dean number, De, and the channel aspect ratio, l: Secondary ¯ow streamlines for the case of

l � 1=2 are presented to illustrate the enhanced stability in curved rectangular channels in comparison with curved
square channels. A curve illustrating the relationship between feff , de®ned as the value of f at which a constant
wall temperature boundary condition can be assumed, and De is presented for several values of l: The solution for

straight channels is also included, and it is found that feff is independent of l for lR1=4: 7 2000 Elsevier Science
Ltd. All rights reserved.

1. Introduction

Curved channel ¯uid ¯ow and heat transfer analysis

is encountered in many engineering problems of practi-

cal interest, including heat exchanger and turbine

blade cooling passage design. As such, this topic has
been accorded widespread attention in recent years.

One of the more interesting aspects of curved channel

¯ows is the introduction of a secondary ¯ow pattern in
the duct cross-section. This characteristic ¯ow pattern

is encountered in each of the three types of curved

channel analyses commonly reported in the literature:
isothermal ¯ow studies (Type 1), non-isothermal ¯ows

with constant ¯uid density (Type 2), and non-isother-

mal ¯ows with variable ¯uid density (Type 3). In both

Type 1 and 2 systems, the secondary ¯ow pattern
results from an imbalance which develops between the

centrifugal force and radial pressure ®elds, whereas in
mixed convection ¯ows (Type 3), gravitational and
centrifugal buoyancy e�ects are present, further com-

plicating the analysis of both curved channel ¯ow ®eld
and heat transfer. The present study analyzes a Type 2
system and includes the e�ect of channel wall conduc-

tion, as discussed below.
A survey of previous curved channel investigations

[1±19] reported in Gyves et al. [20] indicates that all of
the earlier heat transfer studies have been limited by

their adoption of the idealized H1 or H2 thermal
boundary conditions. These boundary conditions are
typically employed in order to simplify the analytical

model, but they hide one of the more interesting
aspects of the problem at hand, namely, the peripheral
conduction which occurs in the channel wall itself. One

must assume that the channel wall material has an in®-
nitely high value of thermal conductivity in order for
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the H1 condition to accurately model the system. Con-

versely, the H2 boundary condition requires that the

channel wall have a zero thermal conductivity, in

which case all heat generated within the wall in a

speci®c control volume is transferred directly to the

¯uid at that same location without any peripheral con-

duction. Eckert and Irvine [21] noted that a wall con-

duction parameter, f, could be employed to

characterize the conjugated nature of the channel ¯ow

problem, and the present analysis provides Nu sol-

utions for a complete range of values of this par-

ameter, including the idealized asymptotic solutions

NuH1 and NuH2, for several values of l, the channel

aspect ratio.

2. Analysis

The curved channel is illustrated in Fig. 1. Flow is
assumed to be laminar, fully developed and steady,
and all ¯uid properties are assumed constant. It is

further assumed that the radius of curvature, R, is
large compared to the channel width b. As such, the
model neglects all terms of the order 1=R and 1=R 2,

Nomenclature

a height of a curved rectangular channel
b width of a curved rectangular channel
Cp speci®c heat

De Dean number, = Re�Dh

R �1=2
Dh hydraulic diameter, � 2a

1�l
dp�=dz� dimensionless axial pressure gradient
f friction factor
�h average heat transfer coe�cient

H1 constant peripheral wall temperature
boundary condition

H2 constant peripheral heat ¯ux boundary
condition

k thermal conductivity
l� dimensionless channel wall control

volume spacing

n� dimensionless normal coordinate
Nu Nusselt number, � �hDh

kf
, � 1

T �wÿT�bP pressure

p� dimensionless pressure, � P
rn 2=D 2

h

p� dimensionless distance along channel
perimeter, � x� � y�

Pe Peclet number, � �WDh=af

Pr Prandtl number, � n=a
q0 heat transferred per unit surface area of

channel wall
q0 ' internal heat generation per unit volume
R radius of curvature of a curved rec-

tangular channel
r+ dimensionless radius of curvature, �

R=Dh

Re Reynolds number, � �WDh

nf
, � w�

S source term
t duct wall thickness
T temperature

T+ dimensionless temperature, � TÿT0

q 00Dh=Kf

U, V, W velocity components in the X, Y, and Z-

directions

u�, v�, w� dimensionless velocity components, �
�U, V,W �Dh=n

�W average axial velocity

w� average dimensionless axial velocity, �
�WDh=nf

X, Y, Z cartesian coordinates

x�, y�, z� dimensionless coordinates, � �X, Y, Z �=
Dh

Greek symbols
a thermal di�usivity
G di�usion coe�cient in the SIMPLE al-

gorithm

E convergence criterion use in the numeri-
cal procedure

l channel aspect ratio, =a/b

m dynamic viscosity
n kinematic viscosity
r density

s dependent variable in the SIMPLE al-
gorithm

f dimensionless wall conduction par-

ameter, � kwt=kfDh

Subscripts
b bulk

e� value at which Nu � 0:99NuH1

f ¯uid
i, j nodal points on numerical grid

l local value
p perimeter
s value for a straight channel

T total
w wall
0 reference value, or cross-sectional aver-

age

s value corresponding to a particular
dependent variable
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with the exception of the rW 2

R term. The exterior

channel surface is adiabatic, and the rate of internal
heat generation is uniform throughout the channel
walls, which are assumed to be su�ciently thin such

that channel wall conduction can be modeled as one-
dimensional along the channel perimeter.
The present analysis also assumes that the curved

channel ¯ow can be modeled as a parabolic ¯ow ®eld,
which results in a signi®cant degree of simpli®cation in
the governing equations. The dominant ¯ow direction

in curved channels is axial, and the ¯ow can be cate-
gorized as parabolic in that direction. Convection will
dominate di�usion in this direction and hence the axial

di�usion terms which appear in the Navier±Stokes
equations can be ignored. The ¯uid pressure ®eld is
assumed to be ``decoupled'' in parabolic ¯ows, with

the total ¯uid pressure at any point, PT, considered to
be the sum of a cross-stream average pressure, P0�Z �,
which is a function of the streamwise coordinate alone,

and a pressure P 0�X, Y � which varies in the cross-
stream direction. That is

PT � P0�Z� � P 0�X, Y�: �1�

For fully developed ¯ow, the axial pressure gradient,

@P0=@Z, is constant. Noting that

@PT

@X
� @P 0

@X
�2�

and

@PT

@Y
� @P 0

@Y
�3�

the governing equations for the present system can
then be written in the following form [10±12] (in the

equations below, P ' is noted simply as P for clarity):

Continuity equation

@U

@X
� @V
@Y
� 0 �4�

Momentum equations:

Fig. 1. Curved channel coordinate system.
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Substitution of the dimensionless variables listed in the

nomenclature leads to the following set of dimension-
less equations:

@u�

@x�
� @v

�

@y�
� 0 �9�

u�
@u�

@x�
� v�

@u�

@y�

� ÿ @p
�

@x�
� w�2

r�
� @

2u�

@x�2
� @

2u�

@y�2
�10�

u�
@v�

@x�
� v�

@v�

@y�
� ÿ@p

�

@y�
� @

2v�

@x�2
� @

2v�

@y�2
�11�
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@w�

@x�
� v�

@w�

@y�
� ÿ@p

�

@z�
� @

2w�

@x�2
� @

2w�

@y�2
�12�
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�13�

The equations are subject to the following boundary
conditions:
At the channel wall:

u� � v� � w� � 0 �14�

The energy equations for the channel walls are derived
by balancing the net conduction across a typical con-

trol volume with the rate of internal heat generation
and the convection heat transfer between the wall and
¯uid. For example, the left wall equation may be writ-

ten as:

kwt�1� d 2Tw

dY 2
dY� q 000t dY�1�

� ÿkf dY�1�
�

dT

dX

�
wÿf

�15�

Employing the de®nitions for the dimensionless tem-
perature and the wall conduction parameter, f, the left
wall energy equation becomes

f
d 2T �w
dy�2

� 1�
�

dT �

dx�

�
wÿf

� 0 �16�

The equations for the remaining walls can be easily de-
rived in a similar manner.
The appearance of the parameter f in the wall

energy equations is a direct consequence of the conju-
gated nature of this system. Eckert and Irvine [21]
identi®ed this important parameter in a study of con-

vective heat transfer in triangular ducts. It is helpful at
this point to examine its physical interpretation, since
it plays a signi®cant role in the analysis to follow. We

have de®ned f as

f � kwt

kfDh

�17�

and as can be readily seen, in®nitely large or small
values of this parameter describe two distinct thermal
boundary conditions. In the ®rst of these (i.e. f41),
the channel wall is termed ``thermally thick'', with kw

and/or t assuming asymptotically large values. In this
case one would expect that the channel wall would act
as a strong agent for conducting the heat generated in

any section to neighboring areas. The result would
therefore be a channel with nearly uniform wall tem-
peratures along the entire perimeter, a situation very

similar to that predicted by the H1 boundary con-
dition. For asymptotically low values of f (i.e., f40),
the channel wall is termed ``thermally thin''. A number
of factors can contribute to such a condition, including

extremely low values of kw and t, or very large values
of kf : Poor wall conductivity, coupled with a minimal
path of resistance (i.e., small t ) between the wall and

the ¯uid would result in the energy generated within
the wall at any point being transfered to the ¯uid at
that same location through convection, rather than

being conducted along the wall perimeter as described
in the ®rst case above. Since the assumption is made
that the internal heat generation is uniform around the
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perimeter, this would result in a constant wall-to-¯uid
heat ¯ux around the channel perimeter, commonly

refered to as the H2 boundary condition.

3. Numerical solution

Patankar [22] notes that the basic equation govern-
ing all analytical models of heat and mass transfer and
¯uid ¯ow is a conservation equation which includes

both convection and di�usion terms, as well as an
appropriate source term. This general equation can be
written as follows:

r �
ÿ
r �Us

�
� r � �Gsrs� � Ss �18�

Here, �U is the three-dimensional velocity vector with

X, Y, and Z components, and G and S are the di�u-
sion coe�cient and source term, respectively, corre-
sponding to a particular dependent variable s: The

dependent variable s can represent dimensional or
dimensionless quantities, such as a velocity component
(U or u�, as in the case of the x� momentum
equation), or the ¯uid temperature (T or T �, as in the

case of the ¯uid energy equation). This generalized
conservation equation can be written in terms of
dimensionless variables, with s representing a dimen-

sionless dependent variable, and G and S the appropri-
ate di�usion coe�cient and source term, respectively.
In Cartesian-tensor form, the (steady state) dimension-

less conservation equation can be written as follows:

@

@x i
�uis� � @

@x i

�
Gs

@s
@x i

�
� Ss �19�

In the case of the dimensionless x-momentum
equation, we have the following:

s � u� �20�
and

Gs � 1 �21�
The expressions for the dependent variable, s, the dif-
fusion coe�cient, Gs, and the appropriate source term,

Ss for each of the dimensionless equations are de®ned
in Table 1.

The solution procedure employed in the present
study is based upon the algorithm outlined in Patan-
kar, working in conjunction with a new subroutine

developed by Gyves [23] to account for the thermal
boundary condition of peripheral wall conduction and
wall-to-¯uid convection. For given values of r�,
dp�=dz�, Pr, and f, the numerical solution procedure
starts with an initial guess for u�, v�, w�, T �, and p�

at each nodal location. Updated values for all depen-

dent parameters are then obtained using the SIMPLE
algorithm, with the convective and di�usive terms for-
mulated using a power-law scheme. The wall energy
subroutine provides updated wall temperature data at

each iteration. This iterative procedure is then repeated
until the following convergence criterion is satis®ed at
each node:

sk�1i, j ÿ ski, j
sk�1i, j

< Es �22�

where s represents u�, v�, w�, and T �, the subscripts

i, j refer to nodes on the numerical grid, and k� 1
refers to the latest iteration. The following values for
the convergence criterion, E, were selected and used

throughout the analysis:

Eu�, v� � 10ÿ3 �23�

Ew� , T � � 10ÿ4 �24�

These convergence parameter values are similar to

those utilized by Komiyama et al. [12] and Cheng et
al. [5] �E � 10ÿ3� and Dong and Ebadian [17]
�E � 10ÿ4). A range of underrelaxation factors was

employed during the calculation procedures to assist in
obtaining a convergent solution. Values ranging from
0.25 to 0.5 were used depending upon the magnitude

of De, with the smaller relaxation factors utilized at
higher values of De.
The numerical results of primary interest in the pre-

sent study are the calculated values for the Dean num-
ber (De ), friction factor ( f ) and the average Nusselt
number �Nu). The Dean number is de®ned as

De � Re

r�0:5
�25�

The Reynolds number, Re, which appears in this

equation is based upon the cross-sectional averaged
axial velocity, �W, calculated by integrating over the
channel cross-section:

Table 1

Dimensionless conservation equation variables

s Gs Ss

u 1 Su � w 2=r
v 1 Sv � 0

w 1 Sw � ÿdp=dz
T 1=Pr ST � ÿ4 o

RE Pr
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�W �

�
W dx dy�

dx dy

�26�

The friction factor based upon the channel hydraulic
diameter, fDh

, is given by

fDh
� ÿ2�dP=dZ�Dh

r �W
2

�27�

Applying the de®nitions for the dimensionless variables

p� and z�, it can be easily shown that the product of
the friction factor and Reynolds number reduces to the
following simpli®ed expression

f Re � ÿ2dp�=dz�

�w�
�28�

The average wall-to-¯uid heat transfer coe�cient, �h, is
de®ned as follows:

�h � q 00

�Tw ÿ Tb

�29�

where q0 represents the heat ¯ux between the channel

wall and the ¯uid, �Tw is the average wall temperature
around the channel perimeter, and Tb is the ¯uid bulk
temperature. The average Nusselt number, Nu, can be
expressed as

Nu � 1

�T
�
w ÿ T �b

�30�

In the present analysis, T �w is the average wall tem-
perature around the channel perimeter, i.e.,

T �w �

�
p

T � dl��
p

dl�
�31�

where dl� represents the wall control volume length
across which a particular nodal temperature T �i is

assumed to be constant. The dimensionless ¯uid bulk
temperature, T �b , is calculated in a manner similar to
that outlined for �W above, i.e.

T �b �

�
T �w� dx�dy��
w� dx� dy�

�32�

Numerical results for the curved channel ¯ow ®eld and
Nu have been obtained using a curvature ratio of r� �
100 and a 30� 30 numerical grid. This grid resolution
is comparable to that employed by Cheng and
Akiyama [10] �32� 32� and Komiyama et al. [12] and

Cheng et al. [5] �20� 20� in their analyses of curved
rectangular channels. In addition, several straight

channel solutions are presented for the asymptotic case
of an in®nite radius of curvature (i.e., r�41). For
the purposes of the present study, a straight channel is

modeled using a radius of curvature of r� � 1000:

4. Results and discussion

4.1. Straight channel ¯ow ®eld

The accuracy of the numerical model was initially
tested by examining its ability to predict straight chan-

nel behavior at asymptotically high values of the
dimensionless curvature ratio, r�, for a variety of
channel aspect ratios. Table 2 provides the numerical
solution for the product of f Re for straight channels

with aspect ratios ranging from l � 1:0 to l � 1=8,
and a comparison with those solutions previously pre-
sented in the literature [24,25]. The results indicate that

the numerical model is e�ective in calculating straight
channel ¯ow ®eld solutions over a wide range of aspect
ratios.

4.2. Straight channel forced convection �NuH1 and
NuH2)

Straight channel NuH1 and NuH2 solutions have been
obtained for channels with aspect ratios ranging from

l � 1:0 to l � 1=8 for Pr � 1:0: The H1 and H2 sol-
utions were obtained using values of the wall conduc-
tion parameter, f, equal to 50.0 and 0.001,

respectively. The numerical solutions are presented in
Table 3, along with previously published solutions [24±
26]. Once again, it is clear that the numerical model

Table 2

Straight channel ¯ow ®eld solution �r� � 1000)

fRe

l Calc. Ref. [24,25] %Di�erence

1 14.16 14.23 ÿ0.49
4/5 14.31 14.40 ÿ0.62
3/4 14.41 14.50 ÿ0.62
3/5 14.91 15.50 ÿ0.60
1/2 15.47 15.55 ÿ0.51
1/3 16.98 17.10 ÿ0.70
1/4 18.11 18.23 ÿ0.66
1/5 18.93 19.10 ÿ0.89
1/6 19.54 19.70 ÿ0.81
1/8 20.39 20.59 ÿ0.97
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accurately represents straight channel behavior for
r� � 1000:

4.3. Straight channel conjugated forced convection

The numerical solution for conjugated forced con-
vection heat transfer in straight rectangular channels

of various aspect ratios is illustrated in Fig. 2, where
Nu is presented as a function of the wall conduction
parameter, f, and channel aspect ratio, l: The data

presented in Fig. 2 indicate that Nu increases with
decreasing values of the aspect ratio for fr0:2: This
inverse relationship between Nu and l is indicated in
Table 3 for the H1 thermal boundary condition, and

the fact that this relationship holds for nearly the
entire range of f values is clearly demonstrated in
Fig. 2.

As noted in our earlier study [20], it is useful to
introduce a parameter called the e�ective wall conduc-

tion parameter, feff , when examining the e�ect of con-

jugated boundary conditions in systems such as that
considered in the present study. This parameter pro-

vides one the opportunity to approximate the rather

di�cult conjugated analysis with the asymptotic sol-
ution corresponding to the thermal boundary con-

dition of uniform peripheral wall temperature. Once
again we de®ne feff as the value of f at which Nu is

equal to 99% of the uniform peripheral wall tempera-

ture solution, NuH1: We can then infer from the actual
value of f whether such an approximation will yield

accurate results for Nu: Data for feff have been

obtained for channels with aspect ratios ranging from
1 to 1/8, and the results are presented in Fig. 3. Two

distinct regions are depicted in this graph. In the ®rst
of these �1=3 < l < 1�, feff exhibits a strong depen-

dence on the channel aspect ratio, with feff increasing

from 1.75 to 12.9 as l decreases from 1.0 to 1/3. In the
second region �lR1=4�, feff is independent of the

Table 3

Straight channel heat transfer solution �r� � 1000, Pr � 1:0)

l NuH1 NuH2

Calculated Ref. [25] %Di�erence Calculated Ref. [24,26] %Di�erence

1/1 3.613 3.61 0.08 3.097 3.091 0.19

1/2 4.137 4.12 0.41 3.046 3.017 0.96

1/3 4.808 4.79 0.38 3.002 2.940 2.11

1/4 5.347 5.33 0.32 2.997 2.930 2.29

1/8 6.534 6.49 0.68 ± ± ±

Fig. 2. Straight channel conjugated forced convection

�r� � 1000, Pr � 1:0).
Fig. 3. Straight channel e�ective wall conduction parameter

variation with l �r� � 1000, Pr � 1:0).
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aspect ratio and remains constant at 15.0. This indi-
cates that for aspect ratios less than 1/4, values of f �
15 are required to attain the maximum heat transfer.

4.4. Curved channel ¯ow ®eld

The development of a secondary cross-stream ¯ow

pattern consisting of two counter-rotating vortices at
lower values of De, together with the subsequent tran-
sition to four vortices at higher values of De known as

Dean's Instability, are well established phenomenon in
curved channels. Fig. 4a±d illustrate the development
and intensi®cation of this secondary ¯ow ®eld at
increasing values of De for a channel with l � 1=2: It
is interesting to note that the value of De at which the

secondary ¯ow ®eld transitions to the four-vortex pat-
tern is a function of the channel aspect ratio, a con-
clusion reached earlier by Komiyama et al. [12]. The

square channel examined in Gyves et al. [20] exhibited
this transition at De � 151:1, while the channel illus-

trated in Fig. 4 remains stable for De � 183:4, a ®nd-
ing similar to that presented earlier by Cheng et al. [5]
for a curved channel at De � 176: Thus it would

appear that curved rectangular channels exhibit more
stable secondary cross-stream ¯ow patterns than do
square channels at equal values of De. The impact of

channel aspect ratio on overall heat transfer rates is a
key element in the present study, and will be addressed
below. For the moment we simply note that it is the

introduction of a secondary ¯ow ®eld and the sub-

Fig. 4. Curved channel secondary ¯ow streamlines �r� � 100, l � 1=2�: (a) De � 31:3; (b) De � 69:1; (c) De � 115:5;
(d) De � 183:4: (Increasing streamline values indicate stronger secondary ¯ow vortices.)

Table 4

Curved channel ¯ow ®eld solution �r� � 100, l � 1=2�

dp/dz+ De f Re=f Res

Calculated Ref. [5] %Di�erence Calculated Ref. [5] %Di�erence

ÿ5000 16.1 16.0 0.63 1.003 1.01 ÿ0.69
ÿ10,000 31.3 31.1 0.64 10.3 1.04 ÿ0.96
ÿ26,000 69.1 68.1 1.47 1.22 1.24 ÿ1.61
ÿ50,000 115.5 112.6 2.58 1.40 1.44 ÿ2.78
ÿ90,000 183.4 176.6 3.85 1.59 1.65 ÿ3.64
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sequent onset of Dean's Instability which serves to
produce increased heat transfer rates in curved chan-

nels above those found in straight channels. For equal

values of De, then, one would expect to see a decrease
in the value of Nu=Nus as the channel aspect ratio

decreases from 1.0. This is in fact what our ®ndings in-

dicate, as will be discussed below.

The solutions for the Dean Number and the friction
factor ratio (i.e., the ratio of the curved channel f Re

to the straight channel f Res� at various values of the

axial pressure gradient are presented in Table 4 for a
channel with l � 1=2, and are found to be in good

agreement with data presented earlier by Cheng et al.

[5].

4.5. Curved channel forced convection (H1 boundary
condition)

As noted above, all prior studies of forced convec-
tion heat transfer in curved rectangular channels have

employed one or more of the simpli®ed thermal
boundary conditions, including the H1 boundary con-
dition which assumes a peripherally uniform wall tem-

perature. The present analysis yielded results for
NuH1=Nus, which are in good agreement with data pre-
sented earlier by Cheng and Akiyama [10] for several

aspect ratios, as indicated in Fig. 5.
One of the more interesting results presented in

Fig. 5 has already been alluded to with respect to the
stability of the secondary ¯ow stream in curved chan-

nels with aspect ratios other than l � 1: It was noted
above that as the value of l decreases from 1.0, the
transition to a four vortex secondary ¯ow is delayed

until progressively higher values of De are reached.
The impact of this is clearly seen in Fig. 5, where for
®xed values of De, the ratio of NuH1=Nus decreases as

the aspect ratio decreases from l � 1:0: Alternately,
one can see that the rate of increase of the curved
channel NuH1 over the straight channel value is signi®-

cantly reduced as the aspect ratio decreases from l �
1=2 to l � 1=5: These results are also in qualitative
agreement with data presented by Komiyama et al.
[12] for curved channels with similar aspect ratios and

Pr � 0:71:

4.6. Curved channel conjugated forced convection

The solution to conjugated forced convection in a
curved rectangular channel with l � 1=2 is presented

in Fig. 6, where Nu is presented as a function of both
f and De for Pr � 1:0: The dramatic increase in Nu
with increased values of De is a direct result of the pre-

sence of the secondary ¯ow ®eld. It is also clear that
the introduction of the secondary ¯ow vortices greatly
enhances the rate of heat transfer over that found in
straight channels, irrespective of the thermal boundary

condition imposed upon the system. This is evident

Fig. 5. Curved channel forced convection Ð H1 boundary

condition �r� � 100, Pr � 0:73).

Fig. 6. Curved channel conjugated forced convection

�r� � 100, l � 1=2, Pr � 1:0).

Table 5

Curved channel conjugated heat transfer solution

�r� � 100, l � 1=2, Pr � 1:0)

dp/dz+ De NuH2 NuH1 Nu=Nus feff

ÿ5000 16.1 3.13 4.17 1.01 6.50

ÿ10,000 31.3 3.54 4.46 1.08 4.00

ÿ26,000 69.1 5.37 6.15 1.49 0.60

ÿ50,000 115.5 6.85 7.67 1.85 0.70

ÿ90,000 183.4 8.55 9.34 2.26 0.60
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when one compares the straight channel conjugated

solution for Nu for l � 1=2 presented in Fig. 2 with

the data in Fig. 6.

The curvature-induced secondary ¯ow ®eld also has

a dramatic e�ect on the value of feff , as indicated in
Tables 5 and 6 for channels with l � 1=2 and l � 1=3:
For all aspect ratios examined in the present study, the

value of feff decreases as De increases. This is similar

to our earlier ®ndings for square channels [20], where
feff was shown to decrease from a straight channel

value of 1.75 to a value of 0.3 for De > 30: In Fig. 7

feff is presented as a function of De for l � 1, 1/2,

and 1/3. Here we note the very interesting result that,
for feff00:6 and De > 80, the forced convection Nu is

very closely approximated by the NuH1 solution for

l � 1, 1/2, and 1/3. As such, very reasonable accuracy

can be obtained under these speci®c conditions by
employing the simpli®ed boundary condition of uni-

form peripheral wall temperature, thereby eliminating

the need to perform the more rigerous conjugated

analysis.

The in¯uence of aspect ratio on local heat transfer

rates around the curved channel perimeter for ®xed De
values is illustrated in Fig. 8. Here, the local Nusselt

number, de®ned as

Nul � 1

T �w ÿ T �b

�
dT �

dn�

�
�33�

is plotted as a function of location around the channel
perimeter for channels with l � 1, 1/2, and 1/3, with
De � 100:9, 101.6, and 100.6 respectively. The dimen-
sionless distance around the channel perimeter, p�, is

measured in a counter-clockwise fashion starting at the
bottom left corner. For a thermal boundary condition
of f � 1:0, we note the dramatic rise in the maximum

Nul value along the outer wall as the aspect ratio
decreases from l � 1 to 1/3. The point of maximum
heat transfer also shifts to the center of the outer wall

for non-square curved channels, whereas the square
channel's maximum Nul value is located at two points
slightly above and below the channel's horizontal cen-
terline. This trend towards higher local heat transfer

rates at decreasing values of l is reversed along the
inner wall, where it can be seen that Nul values
decrease as l decreases. The pro®le along the inner

wall maintains its form for all aspect ratios, with the
points of maximum Nul located symmetrically about
the horizontal centerline. Local heat transfer rates

along the top and bottom walls are observed to be
identical for a given value of l, and show a less
marked increase for decreasing l than that noted

above for the outer wall. For each value of l exam-
ined, the maximum Nul value for the top and bottom
walls is located to the right of the channel's vertical
centerline.

5. Conclusions

The numerical solution to conjugated forced convec-
tion in curved rectangular channels has been presented

here for the ®rst time, and the asymptotic straight
channel solutions for f40�H2� and f41�H1� have
been shown to be in strong agreement with data

reported previously in the literature for channel aspect
ratios ranging from l � 1 to l � 1=8: The dramatic
increase in Nu with increasing De has been demon-
strated for all values of the wall conduction parameter

f: It has been shown, however, that this curvature
e�ect is less signi®cant as the channel aspect ratio
decreases from l � 1, due to a delay in the transition

to a four-vortex ¯ow pattern. The e�ective wall con-
duction parameter, feff , has been shown to be strongly
dependent upon the channel aspect ratio in straight

channels for 1=3 < l < 1, and independent of l in
straight channels with lR1=4�feff � 15�, as well as in
curved channels with Der100�feff10:6�:

Table 6

Curved channel conjugated heat transfer solution �r� � 100,

l � 1=3, Pr � 1:0)

dp/dz+ De NuH1 Nu=Nus feff

ÿ5000 14.72 4.812 1.001 10.80

ÿ8000 23.49 4.846 1.008 10.00

ÿ10,000 29.24 4.903 1.020 9.70

ÿ14,000 40.25 5.110 1.063 7.25

ÿ20,000 55.17 5.576 1.160 2.40

ÿ30,000 76.71 6.492 1.350 0.68

ÿ40,000 96.01 7.280 1.514 0.60

ÿ50,000 114.09 7.895 1.642 0.60

Fig. 7. Curved channel e�ective wall conduction parameter

variation with De �r� � 100, Pr � 1:0).
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